
Trash-E: Autonomous Litter
Picker Upper

Thomas Greco, Christian Mayo,
Chrizzell Sanchez, Alex Rizk

Dept. of Electrical and Computer
Engineering, University of Central Florida,

Orlando, Florida, 32816

Index Terms — Inspired by a cartoon character from a
Disney film, existing products such as the Roomba, and the
want to automate trash pickup, Trash-E was born as an
electrical and computer engineering project that incorporates
new technologies to make a simple task more exciting.
Trash-E is a mobile autonomous robot that can go around
and pick up anything that is classified as litter. Using
Computer Vision (CV), the robot is able to see and identify
trash, which is determined by training the robot to recognize
objects. This is possible by feeding the robot hundreds of
pictures of items that we want recognized. Currently, Trash-E
is trained to recognize Red Solo Cups, which it is able to pick
up and carry. Trash-E also incorporates Light Detection and
Ranging (LiDAR), which is a laser scanning method, to scan
its environment. The LiDAR sensor works in tandem with the
Robot Operating System (ROS) in order to implement
Simultaneous Localization and Mapping (SLAM), which
allows the robot to map the environment and avoid obstacles
while it is moving around looking for litter.

Index Terms — LiDAR, Ultrasonic Technologies, SLAM,
ROS, Deep Neural Network, Robot.

I. INTRODUCTION

Litter is an increasingly difficult problem to address as
the world progresses. Large amounts of money is spent to
pay individuals to pick up leftover objects after many
different events such as tailgates, parties, sporting events,
and the like. Due to the chaotic nature of those situations,
it is extremely difficult to govern and manage each
individual and ensure every piece of litter is brought to a
place to be disposed of. Therefore, venues choose to clean
up after the event rather than take preventative measures.
This leads to another problem that once litter reaches a
certain size, it is too large to pick up multiple at one time.
One must bend down, grab the litter, then put it in a
receptacle for storage until they may properly dispose of it.

A robot does not tire from doing repetitive tasks for
hours on end, making it a perfect fit for this situation.
Trash-E the autonomous litter picker upper can pick

objects up using an arm apparatus, pincers to grip the
objects, and it has a place to store the objects. Trash-E is
driven by two stepper motors which are controlled
autonomously through the microcontroller. The robot is
also able to recognize litter through a camera using CV
and an algorithm to train the system. It is also able to map
its environment by using LiDAR and Ros in parallel. All
of the intensive processing is done by the Jetson Nano. To
be mobile the robot is battery powered. These either need
to be recharged or replaced, but there’s no way to make the
robot run continuously without stopping at some point.

Fig. 1. Trash-E picking up a red plastic cup.

II. SYSTEM COMPONENTS

A. Minicomputer

The Nvidia Jetson Nano is the brain of Trash-E, it will
operate the object detection as well as the SLAM software
simultaneously. The Nvidia Jetson Nano was chosen for its
high memory capacity, and high performance compared to
its competition. It contains 4 GB of LPDDR4 memory
which allows Trash-E to handle multiple complex tasks at
once. It also has a Quad-core ARM A57 CPU running at
1.43 GHz and a 128-core Nvidia Maxwell GPU which
gives the Jetson Nano its high performance and allows
Trash-E to function optimally. The operating system is the
Linux Ubuntu 18.04 distribution which makes it
compatible with many packages and libraries available for
computer vision and SLAM.

B. Microcontroller

For the microcontroller we chose Texas Instrument’s
TM4C1232H6PMI7 for its abundance of clock signal
options. It contains six 16/32-bit GPTM blocks and six
32/64-bit Wide GPTM along with additional features that
would aid in controlling the several motors needed for
Trash-E to operate. If the Jetson is the brains, the MCU is
the body controlling all of the motors. Furthermore, its
max clock frequency is 80MHz which easily allows it to
listen to commands in real time. Plenty of interface options
are also included making for easy communication with
peripherals.

C. Motors

Motors used in our robot would be the Adafruit 169
micro servo, Adafruit 154 standard servo, and Nema 17
Bipolar 59Ncm. The micro servo is positional and can
apply a torque of 2.5 kg-cm. It is used in the gripper for
the opening and closing actions and is more than capable
of gripping light litter objects with the aid of rubber bands
to provide a high friction surface. Two standard servos
with continuous movement and torque of 3.2kg-cm are
able to drive the wheels. Lastly, the stepper motor is
controlled by an A4988 stepper motor driver in order to
move the gripper arm up and down. All Servos are driven
by a PWM signal while the stepper motor is given
directions by the microcontroller.

D. Chassis

Trash-E’s chassis consists of a relatively simple and
cheap design consisting of a flat platform with a bucket on
the rear end, driving wheels on the front, castor wheel in
the back, and a straight robot arm front and center. The
front end of the chassis has a flat open section for
hardware to be placed. Each piece of hardware has a case
to hold it in place, it also allows for it to be glued down.
For picking up the trash, the front part of the straight arm
is connected to a gripper and the rear is being held by the
stepper motor that is encased in its own bracket. LiDAR is
contained within the bucket on its own elevated stand in
order to scan the surrounding room. In addition, the
batteries are contained within the bucket to conserve space
for the PCBs and Jetson.

E. Ultrasonic Sensor

The SainSmart HC-SR04 is used for the ultrasonic
sensor on Trash-E to detect its distance from an object in
front of it. It has an effective ranging distance of 2 cm up
to 400 cm.

F. Lidar

The YDLIDAR X2 is used as the lidar on Trash-E that
will provide the laser scan data to the Jetson Nano for

operating SLAM and creating maps of the environment
Trash-E is in. The YDLIDAR X2 provides 360°
omnidirectional scanning with a range up to 8 meters. It is
a relatively small unit that will fit properly on top of
Trash-E and has low power consumption.

G. Camera

The camera used on Trash-E is the SainSmart IMX219
Camera Module. The camera is designed for use with the
Nvidia Jetson Nano connected via a camera serial interface
(CSI). The camera is used to provide a video feed for
computer vision. The camera is capable of up to 1080p
video recording at 30 frames per second.

H. Batteries

The batteries used for Trash-E are 4 16.8V 2600mAh
Lithium-Ion battery packs that were donated by Smart
Charging Technologies, a company that one of the
engineers currently works for. These battery packs were
placed in parallel, to allow for a higher capacity, to meet
the specification of being able to run for 1 hour.

The different components such as the motors,
microcontroller, and ultrasonic sensor all have different
voltages, so regulators were used to step down to the
correct voltages.

I. Regulators

The regulators used on the PCB are the LM1084-ADJ
5A regulators. These regulators were chosen because they
have high current capability, where our robot has up to
10A at max load, and were the only ones available that met
our needs at the time of purchase. Two regulators are used
in parallel to step down to 5V, and a third regulator is used
to step down to 3.3V. This allows our robot to be fully
mobile.

Although the regulators have high current capability, due
to the nature of linear regulators, they were unable to
power the Jetson Nano, which has power consumption up
to 4A, without triggering the over temperature control.
Furthermore, we were unable to find USB-C controllers
that fit the specifications to power the Jetson Nano.
Therefore, we opted to use a 10,000 mAh external battery
bank to power the Jetson Nano.

III. SYSTEM CONCEPTS

A flowchart is useful for understanding the main
processes of the robot, and to visualize the system as a
whole.

Fig. 2. Block diagram showing the overall design of Trash-E.

As can be seen from the flowchart in Fig. 2, the
microcontroller controls all of the physical aspects of the
robot. The microcontroller needs data from the Jetson to
know what it should be doing.

Fig. 3. Flow chart showing the overall process of Trash-E
functionality.

As shown in Fig. 3 above, the system of Trash-E is
cyclical. From the moment the program starts, Trash-E will
continuously look for trash to pick up. Once it detects a
trash object, it will run the process of picking it up and
then it will go back to looking for trash.

IV. CHASSIS DESIGN

Since Trash-E is fully autonomous it will not have
access to a wall outlet and will need to rely on its own
battery. The greatest contributor to power consumption in
terms of the chassis would be the weight of each
component. To combat this, we chose lightweight
materials, or materials that could be designed to be
lightweight such as acrylic and PETG. The body of the
chassis is made up of three .093” x 11” x 14’ acrylic
sheets, and two are cut up into four separate pieces to form
the bucket that will contain the collected litter. Three
PETG reinforcement bars with 5% infill are used to
provide the main acrylic sheet platform rigidity by super
gluing them underneath. Brackets for the servos were also
made in order to keep them in place under the front end.
Attached to the servos are Pololu wheels for standard size
servos. These wheels directly fit flush onto the gear of the
servo making for a solid hold on the wheels. A castor
wheel is also placed back and center to save on weight and
give full range of motion to Trash-E. Moreover, using
adhesives gives greater freedom in where we could
actually place the hardware on Trash-E. In fact, the
majority of the chassis is held together by adhesives in
order to save additional weight from screws.

Fig. 4. Chassis design with three PETG reinforcement bars.

In order for Trash-E to pick up litter we used a gripper
and arm light enough to not stress out the stepper motor.

The arm was made to be as short as possible, so as not to
strain the stepper motor. Additionally, the arm also is light
and strong enough to hold up the gripper along with
whatever litter is picked up. Two PETG adjustable rails
compose the arm, they can be adjusted longer or shorter
allowing for a modular design. The two rails are then
fastened together with a nut and bolt with the gripper
attached on the end.

Fig. 5. Rendered images of slicer software estimated prints of
gripper (top), adjustable rail arm (middle), and stepper motor
bracket (bottom).

The gripper uses a minimal amount of material for its
design with infill being at a 5% gyroid pattern. It is driven
by a single micro servo through a gear mechanism that
allows for the pincers to open 180 degrees, if trained to it
would be able to collect most small sized litter items . In
order to have litter stay in place while being gripped we

used generic rubber bands. Additionally, a bracket holding
the stepper motor is used to keep the arm in a stationary
position where it has room to operate in a 100 degree arc
above it.

Mounting the lidar in the back center of the bucket area,
it is elevated with a 8 inch stand to give enough clearance
above the 5 inch walls of the bucket. The ultrasonic sensor
is also covered so it can be placed below the gripper arm in
order to give enough clearance to detect the cup. Casings
for the various PCBs are designed to allow for maximum
airflow in order to dissipate heat while being able to be
mounted anywhere on the Chassis. Lastly, a stand elevated
8 inches from the base of the robot is needed to give the
LiDAR scanner enough clearance to generate a clear map
of the room.

Fig. 6. Rendered images of slicer software estimated prints from
top to bottom of ultrasonic sensor case, PCB stands, LiDAR
stand, and servo brackets.

V. SOFTWARE DETAIL

The main goal of Trash-E is to autonomously navigate
an environment while simultaneously looking for trash
objects that it was trained for and picking them up. In
order to accomplish this task, object detection and
simultaneous localization and mapping are needed.

A. Object Detection

The majority of the object detection software was
written using Python and libraries such as PyTorch,
Jetson-Inference, and TensorRT. PyTorch is a popular
python computer vision library. Jetson Inference is an
Nvidia real-time inference deep neural network vision
library for the Jetson platform. This library handles a lot of
object detection functionalities on the Jetson Nano such as
video capture, displaying detection boxes, and running
inference of the model and returning detection data.
TensorRT is an Nvidia library used for optimizing neural
networks on the Jetson platform. The object detection
model architecture is the SSD MobileNet V1 architecture.
It was trained for detecting red plastic cups using PyTorch
in a labeled dataset using hundreds of our own images.

Fig. 7. Process of optimizing a trained PyTorch model with
TensorRT.

After training, the object detection model is converted to
onnx format. Onnx which stands for open neural network
exchange is an open format that represents neural networks
and allows any neural network framework to be able to
convert its own neural network to a format that can be
understood universally. Any software that takes in neural
networks in the onnx format essentially allows any
framework such as TensorFlow and PyTorch to work with
it. This is why TensorRT requires the onnx format, so that
it can be compatible with any neural network that is able to
be converted successfully to onnx. Once the model is
converted to onnx format then it is optimized with
TensorRT, which creates a TensorRT engine that can run
the object detection model. This conversion drastically
improves performance of object detection inference on the
Jetson Nano. In real-time, the Jetson Nano is performing
inference of the object detection at approximately 30
frames per second with a 720p resolution video feed.

Fig. 8. A red plastic cup being detected by the camera on Trash-E
using the object detection model.

The object detection code written for Trash-E does more
than just detect the objects in its view. In order to have
proper and optimal functionality, Trash-E must approach
the closest object in its view. The closest object should
have the biggest detection box as shown in Fig. 8,
therefore an object's closeness is determined by the size of
its detection box area. During the object detection process,
the Jetson Inference API provides data such as the
detection boxes that include other information such as the
class name, confidence score, area, and its center. This
data is used to create a list containing all the current
detections and sort them by area from greatest to least.
Once the closest object is determined, that object is then
tracked. Our code uses the object’s detection box center to
determine where it is on the camera view relative to the
720p resolution, 1280x720. The center value contains a
tuple (x, y) which contains the pixel coordinates on the x
and y axis. In Trash-E’s case, movement is only relevant
on the x-axis, therefore the y value is ignored. Using the
center x value we determine whether the object is located
on the left, right, or center. If the value is less than or equal
750, the object is to the left. If the value is greater than or
equal to 800 then it is to the right. If the value is in
between the previous two pixel markers then it is centered.
The pixel markers 750 and 800 are not exactly in the
middle of 1280, this is because the Jetson Nano camera is
not placed on the center of Trash-E. It is instead placed
more to the left to allow for arm movement. Therefore the
values are slightly skewed to accommodate for what the
true center is.

B. Simultaneous Localization and Mapping (SLAM)

Trash-E would be able to navigate through an
environment solely with object detection. However, this
assumes that there is always a plastic cup in sight. In the
situation that there is no cup in sight or the object detection

model is unable to detect a cup, Trash-E would not move
and essentially be stuck until a cup appears in its view. The
solution to this problem is implementing a way for Trash-E
to navigate an environment autonomously. The best way to
do this is to implement simultaneous localization and
mapping or SLAM for short. SLAM allows us to navigate
an environment autonomously using a lidar.

To implement SLAM, the Robot Operating System
(ROS) is used. Despite its name, it is not actually an
operating system. ROS is an open-source set of software
libraries and tools that help build robotic applications. ROS
has support for python allowing our code to work
seamlessly with our object detection code. The ROS
Melodic version is installed on the Jetson Nano since it is
compatible with our Ubuntu distribution.

When Trash-E is booted up, a map is generated using
hector_slam. This ROS package allows us to create a map
of an environment using the lidar onboard Trash-E.

Fig. 9. Generated map by hector_slam of testing arena.

A serial code is sent to the microcontroller so that it
knows it is in map generation state. Once the map is
generated another serial code is sent to signal the map
generation state is done. Then many ROS nodes are
initialized for working with amcl, a ROS package that is a
localization system for a robot moving in 2D. These nodes
facilitate the localization part of SLAM, which involves
sending the navigation goals and pose of Trash-E in the
environment map to another ROS package called
move_base. The navigation goals are where Trash-E
should navigate towards and the pose is its orientation in
the map. The move_base package when given a goal will
attempt to reach it with the robot by creating a path using
costmaps that are based on the map we generated of the
environment.

Trash-E is navigated with data published by move_base
called cmd_vel which contains velocities in different axes

for robot movement. The only thing that matters in our
case is the angular z velocity, which when negative signals
a turn to the right, when positive a turn to the left, and
when zero means no turn and continues forward. During
SLAM operation, different goals will be generated at
different sides of a map as each goal is reached in order for
it to explore as much of the map as possible.

C. Guiding Trash-E Using Object Detection and SLAM

The final purpose of both these processes is to guide
where Trash-E needs to go. Both these processes can't
guide Trash-E at the same time therefore we have a state
machine in place that determines which process should be
based on certain criteria. UART is used to send data from
our python program to the microcontroller so that it could
control the servo motors on Trash-E.

Fig. 10. Process of choosing whether object detection or SLAM
control Trash-E movement.

Object detection has priority over ROS SLAM for
guiding Trash-E as long as there are cups being detected
by the detection model. Earlier it was mentioned how the
program determines where in the camera view the object is
located. Based on the result of that calculation, we send
the microcontroller one of three serial messages that tells it
the cup is either to the left, right, or center. When there are
no cups in sight, the jetson inference API returns an empty
detection list. This condition switches control over to our
SLAM software and the cmd_vel data from move_base
determines whether Trash-E turns left, right, or goes
forward once we check the z velocity value. Based on the z
value, we send the corresponding serial message to the

microcontroller to tell it to turn left, right, or go forward
just like the object detection does. If at any time during
SLAM control the object detection detects a cup, it will
immediately take control of guiding Trash-E.

D. Embedded Software

With the TM4C1232H6PMI7 providing plenty of GPIO
ports, timers, and access to the Tivaware library
implementation of Trash-E’s features were straightforward
to implement. It outputs to several locations such as the
motors and communicates with the Nvidia Jetson Nano
while reading from an ultrasonic sensor.

All of the embedded software begins with
configuration/initialization of peripherals. For example, in
order for us to output signals to the motors we first have to
enable whichever pins are needed and specify whether
they’re going to be outputting data or receiving.
Furthermore, the timers have to be configured to generate a
PWM signal for the continuous servos driving Trash-E, to
adjust the speed we simply increase the positive width of
the duty cycle. Similarly, the stepper motor outputs a
pseudo PWM signal in which the GPIO pin is driven high
and low with delays in between to conform to the 1μs
duration, 50% duty cycle, of the A4988 stepper motor
driver, this can be seen in Fig. 11. Driving the pin high and
low this way allows for tracking of arm position letting us
know if it’s in the up or down position with some slight
variance.

Fig. 11. Waveform showing the 1μs and 50% duty cycle
waveform driving the stepper motor through the A4988 driver .

The 9g micro servo is controlled in a similar manner to
the continuous servos where it is opened and closed with a
PWM signal generated from a timer.

To read data we followed a similar process mentioned in
the previous paragraph for configuration. The SR-04
ultrasonic sensor is connected to a GPIO pin that reads the
data it puts out. In order to do this we output a high signal
to the trigger pin to get ready to read the digital output of
the sensor. After asking to read a high pulse is sent through
the ECHO pin on the sensor, the length of the pulse gives
the distance measured. A timer in periodic mode runs as
soon as the rising edge of the pulse is received and stores
the duration in a counter variable. Using this duration we
can take the frequency of the clock, divide it by a second
to get the value of the counter variable in nanoseconds.
Then, multiplying it by the value of the counter and
dividing by 58 gives the distance in centimeters; this
information was given by the SR-04 documentation [1].
While the object detection software is detecting a cup, the
ultrasonic sensor on Trash-E was programmed to detect
trash up to a certain distance in order to give enough
clearance for the arm to be lowered in front of the trash
and for the claw to grab it. When the detection software is
not detecting a cup and the ultrasonic sensor detects
something right in front of Trash-E, it will cause it to
reverse away from a potential collision.

Two external buttons are located on the front side of
Trash-E’s chassis at opposite ends. These buttons are
connected to GPIO pins. The purpose of these buttons are
for Trash-E to avoid being trapped against an obstacle due
to its square shape. When the left corner button is clicked,
this will cause Trash-E to receive a signal to reverse and
turn right. If the right corner button is clicked a signal will
be sent to reverse and turn left.

Finally, communication from the Nvidia Jetson Nano to
the TM4C1232H6PMI7 is entirely done through a UART
pin. Communication goes in one direction where the
Jetson decides what to do and the command is received by
the MCU. Several general instructions can be given that
tell Trash-E what to do, and it handles the outputs needed
corresponding to that instruction given. This includes the
motor control and interaction with any peripherals. From
there it follows the flow chart in figure 2 on what to do and
in what order.

VI. BOARD DESIGN

The microcontroller and power system of Trash-E was
implemented on three different boards stacked on top of
each other. This decision was made to optimize the limited
space allocated for the PCB. The triple stacked PCB
allowed for heat dissipation of the linear regulators, by

adding planes that were as big as possible, while still being
able to fit on Trash-E. It also allowed for having smaller
steps between each voltage, to allow for more heat
dissipation and to not trigger the over-temperature
controls.

USB-C capability was implemented on the boards, in the
case that the engineers were able to get access to a
controller that fit the Jetson Nano requirements. However,
due to supply chain issues, controllers were unavailable for
the project.

VII. CONCLUSION

Building Trash-E over the two semesters allocated was a
very challenging situation, which gave valuable
experiences to every member of the group. Throughout the
project the group was tasked with meeting strict deadlines,
conducting meetings that were efficient, which allowed the
group to maximize time working on the project, and
working as a cohesive group.

There were many challenges throughout the process,
such as dealing with supply chain issues, where one day a
part that the group wanted to order had plentiful stock, and
within the week the part would be out of stock, with a lead
time of over a year. This also affected components such as
the Jetson Nano, where a 4GB version could only be found
at more than double retail price. Another challenge faced
by the group was the online aspect. With Covid-19
affecting the world, development of the robot had to be
done individually by the engineers, with online meetings
for progress check ups. Occasionally the engineers were
required to meet in person to pass off physical parts and to
build the chassis of the robot.

The group aspect of the project was similar to how a
company might function, with different engineers working
on different parts of the same project. This allowed the
group to experience taking on responsibilities that they
were interested in, and to work collaboratively to
ultimately complete Trash-E.

ENGINEER BIOGRAPHIES

Thomas Greco is a 22 year-old
graduating computer engineering
student at the University of
Central Florida. Thomas has
accepted a job with L3 Harris in
Melbourne, FL, as a software
engineer.

Christian Mayo is a 22 year-old
graduating computer engineering
student at the University of
Central Florida. After
graduation, Christian will be
taking a job with Qualtrics in
Seattle, WA, as a software
engineer.

Alex Rizk is a 22 year-old
graduating computer engineer at
the University of Central
Florida. After graduating Alex
will be starting an embedded
software engineering job with
Lockheed Martin in Marietta,
GA. In the future, he plans on
pursuing a career in the fields of

Robotics and Mechatronics.

Chrizzell Jay “ CJ” Sanchez is
a 23 year-old electrical
engineering student , with a
focus on Power and Renewables
at the University of Central
Florida. CJ has accepted a job
with Affiliated Engineers in
Gainesville, FL where he will
perform MEP consulting.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and
support of Smart Charging Technologies, who donated
batteries to be used in the robot, and allowed the engineers
to use the lab to test and construct the robot. As well as the
generosity of colleague Noah Zinn for lending an Nvidia
Jetson Nano 4GB Developer Kit.

REFERENCES

[1] Elec Freaks. (n.d.). Ultrasonic ranging module HC - SR04 -
SparkFun Electronics. Retrieved April 7, 2022, from
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCS
R04.pdf

https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf

